spot_img
22 ноября, 2024
ДомойТелекомСобытияIBM впервые в отрасли запускает машинное обучение в частном облаке

IBM впервые в отрасли запускает машинное обучение в частном облаке

Компания IBM представила IBM Machine Learning, первую когнитивную платформу для непрерывного создания, обучения и развертывания большого объема аналитических моделей в частном облаке, которое лежит в основе обширных корпоративных хранилищ данных. Даже используя самые современные методы, специалисты по обработке данных, которых сейчас не хватает на рынке, могут потратить дни или недели на пошаговую разработку, тестирование и модификацию всего одной аналитической модели.

IBM взяла за основу технологию машинного обучения платформы IBM Watson и прежде всего сделает ее доступной там, где размещена большая часть корпоративных данных заказчиков: на мейнфреймах z Systems, операционных ядрах глобальных организаций. С их помощью банки, предприятия розничной торговли, страховые, транспортные и государственные компании ежедневно проводят миллиарды транзакций.

IBM Machine Learning позволяет специалистам по обработке данных автоматизировать создание, обучение и развертывание операционных аналитических моделей, поддерживающих:

  • любой язык (например, Scala, Java, Python);
  • любой популярный фреймворк для машинного обучения (например, Apache SparkML, TensorFlow, H2O);
  • любой тип данных по транзакциям;
  • перемещение данных в облако без дополнительных расходов, задержек или рисков.

Cognitive Automation for Data Scientists, разработанная IBM Research, помогает специалистам по обработке информации выбирать подходящий алгоритм для анализа путем сравнения доступных алгоритмов с имеющимися данными и их ранжирования. Таким образом, система находит наилучшее соответствие для текущих потребностей. Сервис также учитывает различные обстоятельства, например, необходимый функционал алгоритма и скорость получения результатов.

«Машинное и глубокое обучение представляют собой новые сферы аналитики. Эти технологии станут основой автоматизации процесса получения инсайтов в масштабе критически важных систем и облачных сервисов по всему миру, — сказал Роб Томас, руководитель IBM Analytics. — IBM Machine Learning была разработана для эффективного использования ключевых технологий Watson и ускорения внедрения машинного обучения на площадках, где сконцентрирована подавляющая часть корпоративных данных. Поскольку заказчики замечают бизнес-отдачу от инвестиций в частное облако, они будут расширять применение гибридных и публичных облаков».

IBM Machine Learning станет уникальной возможностью, которая поможет бизнесу из различных отраслей справляться с задачами динамического характера.

  • В сфере розничной торговли система предсказания объемов продаж должна принимать во внимание современные тренды на рынке, а не только тенденции прошлого месяца. Для персонализации в режиме реального времени программа должна учитывать все, что случилось за прошедший час.
  • В сфере финансовых сервисов система, которая предлагает различные продукты для финансовых консультантов или брокеров, должна эффективно учитывать текущие интересы, тренды и движения рынка, а не события прошлых месяцев.
  • В области здравоохранения решения персонализированной медицины должны подстраиваться под каждого заказчика и конкретный случай. Медицинские и персональные фитнес-устройства, подключаемые через интернет вещей, могут быть использованы для сбора данных о поведении человека и компьютера, а также их взаимодействии.

Мейнфрейм IBM z Systems способен обрабатывать до 2,5 млрд. транзакций в день — это эквивалент примерно 100 «киберпонедельников». IBM Machine Learning for z/OS помогает извлечь наибольшую ценность из данных z Systems, не перемещая при этом информацию из системы для анализа. Это также позволяет минимизировать задержки, затраты на проведение транзакций и риски безопасности, связанные с традиционными ETL-процессами. Система постоянно анализирует данные, модели для предоставления улучшенных прогнозов, инструменты оптимизации поведенческих моделей и ускорения времени получения инсайтов.

IBM Machine Learning сначала будет доступна на z/OS, а затем появится на других платформах, включая IBM POWER Systems. Развертывая IBM Machine Learning на POWER Systems, заказчики смогут более эффективно использовать машинное обучение, обеспечивая высокую производительность и рентабельность вместе с полным управлением данными.

Получить больше информации о IBM Machine Learning можно на сайте https://ibm.biz/machinelearning. Более подробную информацию о портфеле решений IBM z Systems можно найти на сайте http://www-03.ibm.com/systems/ru/z/.

НОВОСТИ ПО ТЕМЕ

СОЦИАЛЬНЫЕ СЕТИ

11,991ФанатыМне нравится
1,015ЧитателиЧитать
3,086ЧитателиЧитать
714ПодписчикиПодписаться
- Реклама -